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Depinning of semiflexible polymers
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We present a theoretical analysis of a simple model of the depinning of an anchored semiflexible polymer
from a fixed planar substrate in 111 dimensions. We consider a polymer with a discrete sequence of pinning
sites along its contour. Using the scaling properties of the conformational distribution function in the stiff limit
and applying the necklace model of phase transitions in quasi-one-dimensional systems, we obtain a melting
criterion in terms of the persistence length, the spacing between pinning sites, a microscopic effective length
that characterizes a bond, and the bond energy. The limitations of this and other similar approaches are
discussed. We also consider the general problem of thermal depinning in 11d dimensions. In the case of
force-induced unbinding, it is shown that the bending rigidity favors the unbinding through a ‘‘lever-arm
effect.’’
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I. INTRODUCTION

For a broad category of physical problems, a free polym
is characterized by two lengths: the total contour lengthL
and the persistence lengthLp, that is the correlation length o
the tangent unit vector along its contour and is proportio
to its bending rigidity. When the persistence length is mu
smaller than the total length, the polymer is said to be fl
ible and it can usually be treated as a random walk. When
two lengths are of the same order, the polymer is said to
semiflexible. Some of the most important biopolymers b
long to the latter class. For example, the structural elem
of the cytoskeleton are microtubules, actin filaments, a
intermediate filaments with persistence lengths of the or
of 6 mm @1#, 17 mm @2#, and 2mm @3#, respectively. Al-
though DNA filaments usually have a total length grea
than the persistence length (Lp'50 nm), the latter is long
enough to affect their elastic properties@4#. Obvious biologi-
cal relevance and inherent theoretical challenges h
sparked great interest in the statistical mechanics of se
flexible polymers in recent years@5#.

A theoretical analysis of the unbinding of semiflexib
polymers from fixed surfaces or interfaces~adsorption-
desorption transition! or of two semiflexible strands from
each other is a particularly tricky problem. The main reas
is that sharp phase transitions in statistical mechanics o
only in the thermodynamic limit and the thermodynam
limit of semiflexible polymers is ambiguous. If we keep th
persistence length fixed and take the total contour lengt
infinity, we obtain a flexible polymer. If we take the persi
tence length to infinity keeping the total length fixed, w
obtain a rigid rod without any fluctuations. There have be
several studies of this subject over the past few years@6–13#.
In all of those works, the polymer binds to a potential w
which continuouslyextends over the surface~or interface!. In
this paper, we consider a simple model, where a wea
bending semiflexible polymer in 111 dimensions is bound
to a fluid surface~or interface! through adiscretesequence
of regularly placed pinning sites~‘‘sticky points’’ ! along its
length. Such a model resembles the physical situation, w
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an actin filament binds to a membrane through anchor
proteins@14#. The discreteness of the binding sites allows
to employ a different kind of thermodynamic limit tha
avoids the inconsistencies that appear in some prev
works. For fixed total length and persistence length~with L
!Lp), we take the density of binding sites to infinity und
the constraint that the probability of finding such a site ins
the binding region remains constant. Thus, we obtain a c
tinuous unbinding transition and a melting temperatu
which is a function of of the persistence length, the spac
between pinning sites, a microscopic length that charac
izes a bond, and the bond energy. The paper is organize
follows: In Sec. II, we calculate the probability of finding
binding site of the polymer inside a small~microscopic! re-
gion which characterizes a bond. We then consider the s
plest version of our model which is a filament with only on
pinning site. In Sec. III, we use a necklace-model@15,16#
type of approach which yields the thermal depinning tran
tion. In Sec. IV, we discuss the effect of the bending rigid
on the force-induced unbinding of semiflexible polymers
the stiff limit. In Sec. V, we demonstrate the subtleties of th
problem comparing our model with other approaches and
present our conclusions. Finally, in the Appendix, we pres
an analysis of the (112)-dimensional problem that is ver
similar to the (111)-dimensional one because in the weak
bending limit the transverse dimensions decouple.

II. CONFORMATIONAL PROBABILITY –FORMALISM

A widely used model that captures much of the physics
semiflexible polymers~except for their self-avoidance! is the
wormlike chain~WLC! @17#, where the polymer is consid
ered to be a continuous inextensible curver (s) parametrized
by the arc lengths measured along its contour from a fixe
end. The effective free energy of a particular conformat
depends only on the bending~curvature! and is given by

H5
k

2E0

L

dsF]t~s!

]s G2

, ~1!
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wheret(s)5]r (s)/]s is the tangent unit vector of the curv
r (s) andk is the bending rigidity that is related to the pe
sistence length viaLp52k/kBT ~in two dimensions!.

The orientational probability distribution function for fre
semiflexible chains having an initial tangent vectort(0)
5t0 and a final tangent vectort(L)5tL is given by the path
integral

G~ tL ,Lut0 ,0!5NE
t(0)5t0

t(L)5tLD@ t~s!#d„ut~s!u21…expF2
H

kBTG ,
~2!

where the integration is over all fluctuating ‘‘paths’’t(s) sub-
ject to the fixed boundary conditions and the inextensibi
constraintut(s)u51. N is a normalization constant. There
a formal analogy between the classical statistical mecha
of a semiflexible polymer and the quantum statistical m
chanics of a rigid rotator@17#. If we make the correspon
dencek
I , kBT
\, andL
b\ in Eqs. ~1! and ~2!, we
notice thatG(tL ,Lut0 ,0) corresponds to the density matr
element, in the angle representation, of a quantum rigid
tator with moment of inertiaI and inverse temperatureb. As
in the case of a density matrix@18#, the angular probability
distribution function of a free semiflexible polymer satisfi
a Schro¨dinger equation in imaginary time:

]G

]s
5

1

Lp

]2G

]u2
, ~3!

whereu(s) is the angle betweent(s) and a fixed reference
axis @19#. In order to obtain the complete distribution fun
tion that in addition to the tangent vector also includes
position vectorG(r s ,ts ,sur0 ,t0 ,0), wehave to replace thes
derivative in the left-hand side of Eq.~3! by the ‘‘convec-
tive’’ derivative ]s1t•“ r along the polymer pathr (s) with
instantaneous position vectorr and tangent vectort @20#. In
Cartesian coordinates, the equation reads

F ]

]s
1cosu

]

]x
1sinu

]

]y
2

1

Lp

]2

]u2G
3G~xs ,ys ,us ,sux0 ,y0 ,u0 ,0!50, ~4!

whereu is the local slope of the polymer with respect to t
x axis.

In the weakly bending limit (L!Lp), u!1 and we sim-
plify Eq. ~4! setting sinu'u and cosu'1. Since we are no
interested in the longitudinal fluctuations of the polym
~along thex axis!, we integrate the complete probability di
tribution function overx to obtain a simpler equation for th
reduced probability distribution

F ]

]s
1u

]

]y
2

1

Lp

]2

]u2GG~ys ,us ,suy0 ,u0 ,0!50. ~5!

Using Fourier transformations@21#, we solve Eq.~5! with the
‘‘initial’’ condition lim

s→0
G(ys ,us ,suy0 ,u0 ,0)5d(u

2u0)d(y2y0) to get
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G~ys ,us ,suy0 ,u0 ,0!

5
A3

2p

Lp

s2
expH 2

3Lp

s3 F ~y2y02u0s!2

2s~y2y02u0s!~u2u0!1
1

3
s2~u2u0!2G J . ~6!

Apart from explicitly containing the persistence lengthLp ,
Eq. ~6! is identical with that obtained in Ref.@7#. The inter-
pretation, however, is very different. In Refs.@6,7#,
G(ys ,us ,suy0 ,u0 ,0) is interpreted as adimensionlessparti-
tion functionindependentof the persistence lengthLp which
has been eliminated by rescalingy and u. In those refer-
ences, Eq.~6! is expected to be valid for larges and it ap-
pears thats is measured in units of an extra, ‘‘monomer
length. In contrast, we interpret it as a two-point conform
tional probability distribution, valid only in the weakly bend-
ing limit (s!Lp). Notice thatG(ys ,us ,suy0 ,u0 ,0) fulfills
the three fundamental properties of a two-point probabi
distribution; its integral overys andus is 1, it becomes ad
function whens→0 and it obeys the Chapman-Kolmogoro
equation@22#. The corresponding partition function differ
from G(ys ,us ,suy0 ,u0 ,0) by a normalization factor~related
to the measure of the path integral! that should have units o
length in order to render it dimensionless.~It is similar to the
phase volume element 2p\ used in the statistical mechanic
of gases.! In the calculation of several quantities, this no
malization factor is unimportant as it drops out. For this ty
of problems,G(ys ,us ,suy0 ,u0 ,0) itself can be considered a
the partition function. However, as it will become clear b
low, the necklace model involves a sum over powers of
partition function and using a dimensionful quantity in i
place would clearly be erroneous.

For fixed y05u050, the mean square slope and tran
verse displacement of the free end of a filament of lengtL
are^uL

2&52L/Lp and^yL
2&5(2/3)L3/Lp as can be easily cal

culated from Eq.~6!. Theprobability of finding the free end
within a very small range of slopes and transverse displa
ments (2d,uL,d and2e,yL,e with 0,d,e!1) is

P~d,e,L,Lp!5E
2d

d
duLE

2e

e

dyLG~yL ,uL ,Lu0,0,0!

'
A3

2p

Lp

L2
B, ~7!

where B[4de and the approximation holds forB
!(A3/2p)L2/Lp . The partition function Z(d,e,L,Lp) of a
polymer which is constrained so thaty05u050 and 2d
,uL,d, 2e,yL,e while it is unconstrained in the longi
tudinal direction is related to the probabilityP(d,e,L,Lp)
via Z(d,e,L,Lp)5Zf(L,Lp)P(d,e,L,Lp), where Zf(L,Lp)
is the partition function of a free filament. The latter has t
propertyZf(L11L2 ,Lp)5Zf(L1 ,Lp)Zf(L2 ,Lp) and will be
neglected as it is not going to affect any of the observa
quantities, we are interested in.

The probability of finding both the free end and the po
at the middle confined within a very small range of slop
and transverse displacements is
8-2
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E
2d

d
duLE

2e

e

dyLE
2d

d
duL/2E

2e

e

dyL/2GS yL ,uL ,LUyL/2 ,uL/2 ,
L

2DGS yL/2 ,uL/2 ,
L

2 U0,0,0D'S A3

2p

Lp

L2
BD 2

. ~8!
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We shall use this factorization in the calculation of the p
tition function of our model.

We now consider the toy system of a weakly bend
semiflexible polymer with its end points (s50 and s5L)
bound and a pinning site in the middle (s5L/2). A ‘‘bound
site’’ in our model is defined as a point of the polymer whi
is constrained to fluctuate within amicroscopicallysmall
range of slopes and transverse displacements that is ch
terized by the effective lengthB as defined above but it i
free to fluctuate in the longitudinal direction. The latter sit
ation is physically realized in the case of a fluid substr
where the ‘‘sticky points’’ are free to move along a on
dimensional track~membrane!. A ‘‘pinning site’’ is defined
as a point on the polymer which is energetically favorable
be bound with an associated bond energyJ (J.0). The
partition function of this system with one pinning site is

Z15@G~L/2!#2v1G~L !2@G~L/2!#2, ~9!

where

G~ l !5
A3

2p

Lp

l 2
B ~10!

is the conformational statistical weight of a polymer segm
of contour length l whose end points are bound andv
[exp(J/kBT). The third term in Eq.~9! is the ‘‘counterterm’’
needed to prevent double counting of conformations;
conformations associated with@G(L/2)#2 have already been
included inG(L).

The average fraction of intact bonds is

Q5
] ln Z1

] ln~v21!
. ~11!

This is a general expression valid for any number of pinn
sites provided that we replaceZ1 with the correspondingZN
and we divide the right-hand side byN. The calculation of
ZN for N@1 is the aim of Sec. III.

III. THERMAL DEPINNING TRANSITION

The partition function of a weakly bending semiflexib
polymer with its end points (s50 ands5L) bound andN
pinning sites regularly distributed along its length forma
reads

ZN5 (
n50

N

vnP~n!, ~12!

whereP(n) is the probability of a conformation with exactl
n bonds ~but not n11 or n12 or ••• N bonds!. For ex-
ample, in the case of N52, P(2)5@G(L/3)#3,
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P(1)52G(L/3)$G(2L/3)2@G(L/3)#2%, and P(0)5G(L)
22G(L/3)$G(2L/3)2@G(L/3)#2%2@G(L/3)#3. Collecting
terms, we obtain Z25@G(L/3)#3(v21)2

12@G(L/3)#G(2L/3)(v21)1G(L).
Let us define a ‘‘bubble’’ as a polymer segment with on

its ends bound. The minimum length of a bubble isLm
5L/(N11) and the maximum length is equal to the to
contour length of the filamentL. Notice that in our model, a
bubble will always have length<L!Lp . A ‘‘chain’’ is de-
fined as a sequence of minimal bubbles~each of lengthLm).
Figure 1 provides a pictorial definition of bubbles an
chains. The partition functionZN is a sum that consists of a
products of the form f (m1)g(n1) f (m2)g(n2)••• f (mk),
where

f ~m!5
A3

2p

LpB

Lm
2 m2

~13!

is the statistical weight of a bubble of lengthmLm ,

g~n!5@ f ~1!#n~v21!n11 ~14!

is the statistical weight of a chain of lengthnLm , and

m11n11m21n21•••1mk5N11, 0,k,FN11

2 G ,
~15!

where@(N11)/2# is the integer part of (N11)/2. We have

ZN5G~L !1 (
m51

N

f ~m! f ~N112m!~v21!

1 (
k51

[(N11)/2]

(
$nj %

(
$mj %

)
j 51

k

f ~mj !g~nj !

g~nk!
. ~16!

The first two terms in Eq.~16! represent configurations with
only one bond or no bond at all and we shall denote it
DN . The curly braces indicate that the sums must satisfy
constraint of Eq.~15!. As N increases, calculating the com

FIG. 1. A cartoon picture of a polymer conformation with
‘‘chain’’ of length 3Lm , a ‘‘bubble’’ of length 6Lm , a ‘‘chain’’ of
length 2Lm and a ‘‘bubble’’ of length 6Lm . The dots represen
pinning sites and the vertical black lines represent anchoring
teins, that bind the filament to the substrate. The weakly bend
limit allows us to neglect any direct~hard wall! interaction with the
substrate.
8-3
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binatorial factors becomes an impossible task. That is w
we use a standard trick and incorporate the constraint in
partition function via a Kroneckerd @23#:

ZN5DN1 (
k51

[(N11)/2]

(
n51

`

(
m51

`

dFN2(
j 51

k

~nj1mj !G
3expH bFN2(

j 51

k

~nj1mj !G J )j 51

k

f ~mj !g~nj !

g~nk!
,

~17!

where (n51
` (m51

` [(n151
`

•••(nk51
` (m151

`
•••(mk51

` and

the auxiliary real parameterb has been introduced to mak
sure that the partition function converges in later steps of
calculation.

We now introduce a complex representation of the K
neckerd which yields

ZN5DN1
1

2pE0

2p

duexp@N~b1 iu!#

3 (
k51

[(N11)/2] )
j 51

k

F jC j

Fk
, ~18!

where

F j5 (
nj 51

`

g~nj !z
nj , ~19!

C j5 (
mj 51

`

f ~mj !z
mj , ~20!

with z[exp@2(b1iu)#.
Since bothF j and C j are independent ofj, ) j 51

k F jC j

5(FC)k, and since we are interested in a very large num
of pinning sites~thermodynamic limit,N→`), we approxi-
mate (k51

@(N11)/2#(FC)k'FC/(12FC). Using analytic
continuation, we transform the integral overu to a contour
integral over the complex ‘‘fugacity’’z, where the contour
encircles the originz50 in the counterclockwise directio
once and we obtain

ZN5DN1
1

2p i RC
dzz2N21

C

12FC
, ~21!

where

F5
f ~1!~v21!2z

12 f ~1!~v21!z
~22!

and

C5
A3

2p

LpB

Lm
2

L2~z! ~23!
05110
y
e

e

-

r

with L2(z) being Euler’s dilogarithm function@24#. The in-
tegrand in Eq.~21! has three singularities: a pole of ord
N11 at z50; a simple pole at the solutionz0 of equation

C~z0!F~z0!51; ~24!

and a branch cut along the positive real axis starting az
51 due toL2(z). The contourC encircles only the singular
ity at the origin because of the assumptions that we had m
in deriving Eq.~21!. That is,uzu was chosen so that the serie
F andC converge and alsouFCu,1. As shown in Fig. 2,
the contourC can be deformed into a contour that encircl
only z0 clockwise and a loop that goes around the branch
and closes at infinity counterclockwise@25#. At sufficiently
low temperatures, 0,z0,1. In the thermodynamic limit,
DN vanishes and the partition function is determined by
pole atz0 : N21ln ZN'2ln z0.

As the temperature increases,v decreases and it can b
seen from Eq.~24! that z0 is shifted to the right. In the
thermodynamic limit, Eq.~11! yields Q52@(v21)/z0#
3(]z0 /]v). This implies that the average fraction of inta
bonds, which is a physically observable quantity, monoto
cally decreases@26#. The unbinding transition occurs whe
z0→1. Therefore, the unbinding criterion isF(1)C(1)
51. Given that L2(1)5z(2)'1.64, wherez(z) is Ri-
emann’sz function, we obtain

LpB

Lm
2 @exp~J/kBTc!21#'2. ~25!

This is the main result of this paper. The transition will b
continuous because the derivative ofL2(z) diverges logarith-
mically at z51 and, therefore, the average fraction of inta
bonds vanishes continuously at the critical temperatureTc .
Notice that in order to obtain this transition, we need t
thermodynamic limit where N→` and (A3/2p)
3(Lp /L2)N2B which is the probability of finding a pinning
site within the binding region remains constant!1. This
implies thatB→0 that is consistent with amicroscopicef-
fective length that characterizes the bond. Of course,
systems will have a finite number of pinning sites and
transition will not be sharp. For a sufficiently high density
pinning sites, however, we would expect a clear crosso
from a low temperature phase with most of the pinning si

FIG. 2. The complexz plane with poles atz50, z5z0 and a
branch cut along the positive real axis starting atz51. The contour
C can be deformed to a contour aroundz0 and a contour around the
branch cut which closes at infinity.
8-4
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bound to a high temperature phase with most of the pinn
sites unbound which will be described by Eq.~25!. If we
allow the polymer to fluctuate in two transverse dimensio
the depinning transition becomes discontinuous and the t
sition temperature is given by Eq.~A4!. An analysis of the
(112)-dimensional case is presented in the Appendix.

From the original presentation of the necklace mo
@15,16#, it is known that the order of the transition is dete
mined by the scaling of the statistical weight of the bubb
with their size; that is, the exponentc in f (m);1/mc. As we
show in the Appendix, in the case of weakly bending se
flexible polymers in 11d dimensions,c52d. For c<1,
there can be no phase transition. For 1,c,2, the transition
is continuous with critical exponents depending onc. For c
.2, the transition is discontinuous. The 111-dimensional
case that we consider here is the borderline situation betw
continuous and discontinuous transitions. The transition
still continuous but the critical singularities are logarithm
and not algebraic. Specifically, the average fraction of int
bonds vanishes as;1/ln(Tc2T) and the mean size of a give
bubble diverges as; ln(Tc2T). For the sake of complete
ness, it is interesting to calculate the critical exponents
the depinning transition in 11d dimensions withd,1. Ref-
erence@16# shows that the longitudinal correlation lengthj i
diverges atTc asj i;1/(Tc2T)1/(c21). Equation~6! implies
that the mean square transverse displacement of a we
bending semiflexible polymer scales with the cube of
contour length. This scaling holds for any transverse dim
sionality because in the weakly bending approximation
transverse dimensions decouple. Therefore, we expect
the transverse localization lengthj'[^r'

2 &1/2 will scale as
j';j i

3/2 and its critical exponent will be 3/(4d22) @that is,
j';1/(Tc2T)3/(4d22)]. Note that this is precisely the sam
as the result obtained in Ref.@12# for 2/3,d,1 using renor-
malization group~RG!.

IV. BENDING RIGIDITY AND FORCE-INDUCED
UNBINDING

In this Section, we consider the force-induced unbind
of a weakly bending semiflexible polymer and we show t
the bending rigidity facilitates the unbinding. If we apply
transverse force to the free end of a clamped semiflex
polymer, the effective free energy of Eq.~1! changes by an
extra term

Hf5
k

2E0

L

dsF]t~s!

]s G2

2 f E
0

L

dssinu~s!, ~26!

where, as in Sec. II,u(s) is the slope of the tangent vecto
with respect to the longitudinal direction. The partition fun
tion of this system is a path integral over all possible conf
mations. Slicing theL length intoN segments each of lengt
a and using the small-angle approximation, we obtain

H f
N5

k

2a (
i 51

N

~u i2u i 21!22 f a(
i 51

N

u i . ~27!
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In this approximation, the path integral is Gaussian and
be easily calculated@18# yielding

Zf5expF f 2L3

3Lp~kBT!2G . ~28!

The corresponding free energy is

F52
f 2L3

3Lp~kBT!
. ~29!

Note that this free energy is just minus the elastic energy
a cantilever spring,Uel5 f 2/2x, with spring constantx
53k/L3. The latter has been obtained in a linear respo
calculation in Ref.@27#.

Although the original ‘‘Hamiltonian’’~Eq. 26! is exten-
sive, the free energyF of Eq. ~29! is not ~it grows asL3)
because Eq.~29! is an approximation, valid only in the sho
length scales of the weakly bending limit (L!Lp). Given
that the free energy of the bound state is always extens
this nonextensivity leads to a ‘‘lever-arm effect’’ in the forc
induced unbinding. That is, for a long enough total leng
the unbound state will be favorable having a lower free
ergy. We can estimate an upper bound for this ‘‘critica
length. IfFb is the free energy density of the bound state,
‘‘lever-arm’’ critical length Ll should satisfy the condition

FbLl5
f 2Ll

3

3Lp~kBT!
. ~30!

If L.Ll , the transverse forcef will always unbind the poly-
mer ~in equilibrium!. Using the model of Sec. III, we hav
Fb'(kBT/Lm)@J/kBT2 ln(A3LpB/Lm

2 2p)#. It turns out that

Ll'A3
1

f F J2kBT lnS A3LpB

Lm
2 2p

D G 1/2S Lp

Lm
D 1/2

. ~31!

For pulling forces of the order of pico-Newton, persisten
length of the order ofmm, and binding free energy perLm of
the order ofkBT, it turns out thatLl'1023(Lp /Lm)1/2Lp that
is an indication of the relevance of the ‘‘lever-arm effect’’
biopolymers.

This is a phenomenon related to the ‘‘molecular leverag
discussed in Ref.@28#. In both cases, the bending rigidit
facilitates the force-induced unbinding. The two phenome
however, are different. We describe a situation, where
bound state with a sequence of pinned sites becomes the
dynamically unstable when the system is long enough for
‘‘lever arm’’ to dominate the free energy, whereas Ref.@28#
presents an estimate of the torque induced force exerted
singleligand-receptor pair that turns out to be much stron
compared to that applied in traction.

V. DISCUSSION AND CONCLUSIONS

As we mentioned in the Introduction, the unbinding
semiflexible polymers is a particularly tricky problem b
cause of the ambiguity of the relevant thermodynamic lim
and also because of a lack of exact solutions of the W
model with a binding potential. References@9–11# actually
deal with the unbinding offlexible polymers~with L@Lp)
8-5
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and consider the effect of the bending rigidity on the conf
mational properties of the adsorbed~low-temperature! phase.
In these works, the bending rigidity enters as a perturba
to the flexible~Gaussian! chain and the inextensibility is ab
sent. The early references@6,7# use a somewhat inconsiste
approach, where the scaling behavior of a weakly bend
stiff filament~valid only forL!Lp) is artificially extended to
apply to any length. Another serious drawback of this a
proach is that it yields results that appear to be indepen
of the persistence length while, in principle, they should n
The idea is to solve Eq.~5! for largeL with a binding poten-
tial using scaling Ansa¨tze and then invoke the necklac
model to predict the order of the unbinding transition fro
the scaling behavior ofG. The details of the necklace mod
~bubbles, chains, partition function, etc.!, however, are not
worked out. Reference@8# employs a discrete model for stif
filaments where an extra~‘‘monomer’’! length is introduced
and turns out to be relevant for the unbinding transition
also proposes an energy-entropy melting criterion that
plies to adsorbed phases similar to those discussed in R
@9,11#. Reference@12#, using a RG treatment, demonstrat
the relevance of an orientation-dependent interaction field
the unbinding transition. The RG flow implies a thermod
namic limit that carries on some of the inconsistencies
Refs. @6,7#. These inconsistencies, however, appear no
affect the universal properties of the depinning~order of the
transition, critical exponents!. The relevant results obtaine
from our necklace-model treatment turn out to be exactly
same as those from the RG treatment of Ref.@12#. Reference
@13# models a semiflexible polymer as a directed se
avoiding random walk and it reiterates the inconsistencie
Refs. @6,7# because the unbinding transition occurs at
thermodynamic limit of an infinitely long walk~infinitely
longer than the persistence length!, where one would nor-
mally expect to recover the behavior of a flexible chain.

In conclusion, applying the necklace model, we have
tained a criterion for the depinning of anchored semiflexi
polymers in the weakly bending~stiff! limit. This model has
been extensively used to study the unbinding of flexi
polymers@23,25,29,30#. This is its first detailed application
to the unbinding of semiflexible polymers. A general a
rigorous theoretical treatment of the unbinding of semifle
ible polymers of arbitrary total length and persistence leng
in the presence of an arbitrary binding potential, has not
been achieved. Our model suggests an alternative wa
consider the thermodynamic limit for this system a
straightens out several misconceptions of previous studi

We have also shown how the bending rigidity facilitat
the force-induced unbinding of semiflexible polymers in t
weakly bending limit. We have estimated a critical length
a function of the pulling force, the binding free energy de
sity, the persistence length, and the density of pinning s
above which the polymer acts as a lever-arm and unbind
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APPENDIX

In this appendix, we consider the thermal depinning in
12 dimensions. It is the same problem as the one we
cussed in Secs. II and III with the only difference being th
we now allow the polymer to fluctuate in two transver
directions (y andz). Again, we have aline of anchoring sites
~along thex axis!. All of the steps in the calculation, which
yields the phase transition, can be repeated with only mi
modifications. The reason is that in the approximation o
weakly bending filament~valid for L!Lp), the two trans-
verse directions decouple.

As before, the two-point conformational probability di
tribution in 112 dimensions is a function of the position an
the slope at the two points:G(r s ,ts ,sur0 ,t0 ,0). Weparam-
etrize the slope using the ‘‘Monge gauge
t(s)5@1,ty(s),tz(s)#/A11ty(s)21tz(s)2. The imaginary-
time ‘‘Schrödinger’’ equation reads

F ]

]s
1t•“ r2

1

Lp
S ]2

]ty
2

1
]2

]tz
2D GG~r s ,ts ,sur0 ,t0 ,0!50.

~A1!

In the weakly bending approximation, t(s)
'@1,ty(s),tz(s)# and, after integrating overx, we obtain the
following equation for the reduced probability distribution

F ]

]s
1ty

]

]y
1tz

]

]z
2

1

Lp
S ]2

]ty
2

1
]2

]tz
2D GG50, ~A2!

where G5G(ys ,zs ,tys ,tzs,suy0 ,z0 ,ty0 ,tz0 ,0). It is clear
now that the two transverse directions decouple and the
lution with the appropriate initial condition (d function in the
displacement and the slope! will be given by a product of
two factors, each having the form given by Eq.~6!. If we fix
the transverse displacement and the slope ats50 to be zero,
the probability of finding the free end within a very sma
range of slopes and transverse displacements (2dy,tyL
,dy , 2dz,tzL,dz , 2ey,yL,ey , 2ez,zL,ez ,
with 0,dy,z ,ey,s!1) is '(3/(2p)2)Lp

2C/L4, where C
[24dydzeyez .

A bond is now characterized by a binding energyJ and an
effectivearea C. The necklace model calculation is worke
out as before but with a different bubble weightf (m)
5@3/(2p)2#(Lp

2C/Lm
4 m4). The different scaling changes Eq

~23! to

C5
3

~2p!2

L” p
2C

Lm
4

F~z,4,0!, ~A3!

whereF(z,4,0) is Euler’s polylog function@24#. As before,
the unbinding transition occurs whenC(1)F(1)51. Taking
into account thatF(1,4,0)5z(4)'1.08, we obtain

Lp
2C

Lm
4 @exp~J/kBTc!21#'8. ~A4!
8-6
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Since our calculation is based on the assumption
@3/(2p)2#Lp

2C/L4!1 „in the 111-dimensional case, we ha
@A3/(2p)#LpB/L2!1…, Eq. ~A4! and Eq.~25! differ only
quantitatively. The derivative ofF(z,4,0) asz→1 from be-
ol.

.

t
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05110
atlow is finite. This implies a finite jump in the average fra
tion of intact bonds as it vanishes at the transition. The tr
sition is therefore, discontinuous in accord with the R
prediction of Ref.@12#.
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